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ABSTRACT

Recently B. Simon proved a remarkable theorem to the effect that the Schro-
dinger operator T = — A + g(x) is essentially selfadjoint on CBO(R'") if
0= qeLz(R ). Here we extend the theorem to a more general case,

= — E"‘ . (6/(% —ib () +g (O +4q,(0), where b, q, q, are real-

valued, b.€ C(R™)," q1 eL2 (R ) 4,00 2 ——q*('x|) w1th q*(r)monotone
nondecreasing in » and o(rl) as r— oo and a, satisfies 2 mild Stummel-type
condition. The point is that the assumption on the local behavior of g is the
weakest possible. The proof, unlike Simon’s original one, is of local nature
and depends on a distributional inequality and elliptic estimates.

1. Introduction

Consider the Schrédinger operator on R™ of the form
1.1) T=—~ X (6 — ib(x)?* + q(x), Oy = 0 [0x4,
k=1

where the b, and q are real-valued functions such that

(12) qEL%aa bkECI, k=1,""m

here and in what follows C!, I?, L2, etc. refer to the whole space R™ unless

otherwise indicated. Note that T is formally self-adjoint.
We denote by T, the operator T with b, =0, k=1,.--,m

We suppose that T is defined on the whole of I?, with values in 2’ (the space
of distributions on R™). Indeed, u €L}, already implies that (3, — ib)u is a
distribution of order < 1, and hence that (6, — ib,)*u is a distribution of order
< 2 by b, e C'. On the other hand, u € I? implies qu € L}, because q € LZ,. Thus

t This work was partly supported by NSF Grant Gp-29369X .
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we have Tu € 2’. Obviously T'is continuous on I? to 2’. (Actually Tu € @’ if only
ueL? , but we need not consider functions u outside I2.)

Let 7 be the restriction of T with domain 2 = CJ (the space of test functions).
Since T2 < I?, T may be regarded as an operator in I?. Then T is a symmetric
operator. We are interested in the question whether or not 7T is essentially self-
adjoint.

There are several well-known conditions equivalent to essential self-adjointness.
Some of them involve T*, the adjoint (as an operator in I2) of 7. In the present
case, it is easily seen that 7* is exactly the restriction of T in I2; in other words,
T*u is defined whenever u and Tu are in I?, and in this case T%u = Tu.

Using this fact, we see immediately that the following conditions are equivalent.

(E1) T is essentially self-adjoint.

(E2) The restriction of T in I? is the (strong) closure of 7’; in other words, for
each ueI? with Tuel?, there exists a sequence u,€ < such that u,— u and
Tu,— Tu in L2,

(E3) (T + )2 is dense in I? for every complex number { with Im { # 0 or,
equivalently, for two complex { with Im { 2 0.

(E4) T + (is a one-to-one map of L* into 2’ for { as in (E3).

The problem of the essential self-adjointness of 7 has a long history, for which
we refer the reader to a recent book by Schechter [1] and a recent paper by
Simon [2]. But we have some comments. Condition (1.2) is not sufficient for 7" to
be essentially self-adjoint, and many additional conditions have been proposed.
But if g = g7 — g~ with ¢* = 0, then g~ required a stronger condition than g*.
For example, a global condition of Stummel type (see [1]) was required of g~
while only a local condition of the same type was required of g*. In any case,
some local condition stronger than g+ € LZ, was assumed in all known theorems.
(Incidentally, no restriction on the global behavior of the b, was necessary, as
was shown in Ikebe and Kato [3]; see also [1].)

Thus it came as a surprise when Simon [2] proved that Ty, is essentially self-
adjoint if g = q, + g, with 0 < g, e I* and g, € L*. He further conjectured that
0<g,¢ I3, would suffice.His proof depends on a rather sophisticated tool developed
in quantum field theory, which is functional analytic and therefore global in nature.

The purpose of the present paper is to show that T is, in fact, essentially self-
adjoint under more general conditions than conjectured by Simon. Our assump-
tions are:
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(C1) The b, are real and in C*.
(C2) q =4y + qs, Wlth q; EL?oc and

(1.3) 9.:(x) 2 — g*(|x|),

where g*(r) is monotone nondecreasing in r > 0 and ¢*(r) = o(r?) as r - c0.
(C3) qz EL21'acs with

1.4 f [42(0)|?dx S K*r%, 1<r<oo,
[x[s¢

where K and s are some constants, and

(1.5) f |a2(x = »)| | ¥|>~"dy > 0 as r » 0, uniformly in x € R",
yl

Iyl <r

I2—m

where | y should be replaced by }ogl y| fm=2and by lif m=1.
If m =5, (C3) may be replaced by another condition:
(C3) q,e™?.

Our theorem reads:

THEOREM. T is essentially self-adjoint if (C1), (C2), and (C3) are satisfied.
If mz 5, (C3) may be replaced by (C3’).

REmMARKS. 1. The conditions (C1) to (C3) resemble those made in [3], but the
local conditions on g are much weaker than in {3]. It may be noted that the
Stummel-type condition (1.5) is usually introduced to define the Friedrichs
extension of T, but our aim here is more ambitious than that.

2. If m =4, (C3’) does not work in our proof, since it corresponds to the
critical case in the Sobolev inequality. It suffices to assume g, € I” with some
p > 2, but this implies (C3) so we need not consider it separately. Actually it
suffices to assume that g, € L}, uniformly (by which we mean that the I’-norm of
g, on any ball with radius 1 is uniformly bounded), since this implies (C3).

Similarly, if m <3 it suffices that g, e L2, uniformly, since this implies (C3).
For these conditions, see [2].

3. One could consider a more general differential operator of the second
order, as was done in [3], but we refrain from doing so in this paper.

The proof of the theorem given below is conventional and ‘‘local’’, based on
standard elliptic estimates. But we use a lemma of a new type at a crucial stage.
As in all problems of this kind, we have to prove, at some point, a result symbol-
ically expressed by ‘““weak = strong’’ (the theorem itself is of this nature). But the
customary method does not seem to work owing to the high singularity of q,.
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Instead we use the following lemma which is stated in a form more general than
necessary for the present purpose, since it has its own interest, it is useful for other
applications, and since the proof is not essentially different from the special case

LeMMA A. Let

1,m

(1.6) L= 2 (6; — ib;(xNa(x) (0 — iby(x)),

Ik

where aj;, and b; are real-valued functions in CY(Q), Q being an open set in R™.
Assume that (a;(x)) is a positive definite symmetric matrix for each x€Q. If u
and Lu are in L, (Q), then

1.7 Lo|u| = Re[(signi)Lu],
where L, is the operator L with b, =0, k=1,---,m.

REMARKS. 1. By definition sign ﬂ(x)=u—(x_)_/|u(x)] if u(x)#0 and =0if
u(x) =0.

2. Lu makes sense as a distribution on Q if u € L}, (Q), as was shown above.
The assumption of the lemma implies that Lu is equal to a function in
L}, (Q). Since sign # is bounded, the right hand side of (1.7) is in L} (Q).
The left hand side is in 2'(Q) because |u| e L},(Q). The inequality (1.7) asserts
that the difference of the two sides is a nonnegative distribution (hence a non-
negative measure).

3. Technically, the lemma allows one to work in later proofs with inequalities
that are almost linear in u, whereas most of the standard methods make use of
inequalities that are quadratic in u, for example those involving Dirichlet integrals.
But the singularity of ¢, does not allow one to define such quadratic expressions
at crucial points.

The theorem will be proved in Sections 2 to 4 assuming Lemma A, which will
be proved in Section 5.

Before closing this section, we give a simple formal identity which is used
frequently in the sequel. For ueI? and ¢ € 2, we have

1.8) T(¢u) = $Tu — 22 (0,6) (D) — (A,

where A = 202 is the Laplacian and
(1.9) Dk = ak - ibk(x), k = 1, e, m,

The proof of (1.8) is straightforward and may be omitted. The important fact
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is that on the right hand side the derivatives of u appear only in the combinations
Tu and D.u.

2. The special case g* = const.

In this section we prove the theorem in the case g* = const. (so that g, is
bounded from below) and deduce some estimates required later.
We introduce the new norm

@2.1) |]u|i,,;=uu”2+k=21 I D, =08, — ib,,
where | [ without subscript denotes the I*(R™)-norm. The completion of 2

under the norm (2.1) is denoted by H}. It is easy to see that
(2'2) Hb < Hloc’ }Ib1 < LZ,

algebraically and topologically, where H., is the usual Sobolev space.
We note that H; is, in general, not closed under complex conjugation.

ProPcsITION 1. For ueH; and & > 0, we have
(2.3) qu(x)| [u(x) ]de <¢ ” u ” i

where integration on R™ is understood and the constant M, depends only on ¢
and q,.

Proor. If b = (b,) = 0, this is a well-known result. For the proof when (1.5) is
assumed, see [1, Theorem 7.3]. When m = 5 and (C3’) is assumed, it is a con-
sequence of the Sobolev inequality. Indeed, u € H! impliesu e I?, p~* =21 —m~1,
with ” u “LP const ” u HHI, so that (2.3) holds at least with some ¢ >0 dependmg
on |] q, ”L.../z. But g, can be written as a sum ¢’ + ¢”, where ¢q” € L* and H q “L.../z
is as small as one likes. This gives (2.3) for any ¢ > 0.

To prove 2.3y when 550, we may assume u € &. Then we apply (2.3) for b=0to
!u| replacing u. The left hand side is not changed by this substitution. Thus it suf-
fices to show that ”|u|||,,l < ” u “m This is proved in[3]in a2 more general case

ProprosiTION 2. T is bounded from below.

Proor. Let u € @. Using (1.3) and (2.3), we have
2.4) (Tw,w) = I [ D[ + (@ + g2 )

t As is easily seen, H} is characterized as the set of all u € H]}, such that z and the Dy.u
are in L2.
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ul?

v

[l =@+ O u]” —efuli - M.
W-ofuli—@ +1+M)[ul?,

v

from which the result follows on choosing & = 1.

ProrosiTioN 3.7 For any complex number { with Re( sufficiently large,
T+ { is a one-to-one map of I* into 9.

COROLLARY. T is essentially self-adjoint.

Proor. (For the corollary, see conditions (E1) and (E4) of Introduction.)
We have to show that u € I? and (T + {)u = 0 together imply u = 0.

(T + Qu =0 implies Lu = (q + Qu € L},, where L is the operator (1.6) with
aj(x) = 6;. Thus Lemma A gives

Alu| = Re[(sign@)(q + Ou] = (q + Re) |u| = (= g* + q, + Re D) | u|.
Writing ¢ = Re{ — g*, we have
2.5) (@ =8)|u| £ — az|u] =g, ] |u].

Suppose Re( is so large that ¢? > 0. Then ¢? — A maps the Schwartz space &
onto itself one to one, so that it also maps the dual space &’ onto itself one to one.
Furthermore, (c2 —~ A)~! has a kernel g (x — y), where
(2.6) 0<g(x) S A|x|*me” B2 (m23),
with A depending only on m. Inequality (2.6) follows from the expression g,(x)
= const. | x|?"™"2K ,,_,,5(| x|) (Where K is the modified Bessel function of the
second kind) and the homogeneity relation g.(x) = ¢™~2g,(cx). (It will not be
necessary to describe how the following arguments should be modified in case
m<2)

It follows that (c2 —A)~! is a positive operator, sending positive functions

into positive functions and, consequently, positive elements of &’ into positive
ones. Thus (2.5) gives

2.7 lu] S (= D) qu;

note that both | u| and | q,u| are in &’ This is trivial for |u| e I*. For | q,u
follows from (1.4) if (C3) is assumed. Indeed (1.4) implies

, it

| @2 1o £ [ 92 20w 4 | < KR

b4

T This is our key proposition. Simon (private communication) has another proof when
(C3’) (or its variant for m < 4) is assumed, which also depends on Lemma A.
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where By is the ball in R™ with center O and radius R. If (C3’) is assumed for
m =5, we have similarly ” qyu “uwa) < const. R("'_‘”/Z“ qs “L"‘/z“u”. Thus q,u
is a slowly increasing function in L,}, belonging to &#”.

In terms of the kernel g, (2.7) becomes

(2.8) |u@)| £ [9.x — )| 42u()]dy.
Set
(2.9) v(x) = e~ 14 qu(x)|.

Using the estimate on the local L'-norm of q,u given above, it is easy to see that
v, € L'. Multiplying (2.8) by e"CM/‘*l qz(x), and using the inequalities (2.6) and
ecUImIXD4 < el =31/4 e obtain

0.(x) S 4| (0] [|x = y[* e B ()dy,
where A is independent of c.
Integrating this inequality in x, we obtain

(2.10) o] <4 fody f[x = y| "™ P4 g ()| dx.

Now it is not difficult to show, using (1.5), that the integral in x on the right of
(2.10) can be made smaller than 1/24 for every y € R™ if ¢ is chosen large enough.
(In this proof one should note that (1.5) implies that the integral of ] q2| on any
ball of a fixed radius is uniformly bounded.) Thus (2.10) gives v, = 0. Then we
see from (2.9) that g,u =0, and from (2.8) that u =0.

If (C3’) is assumed for m = 5 instead of (C3), we argue as follows. ¢, € L"/? as
an operator in ? is bounded relative to — A, with relative bound 0, by virtue of
the Sobolev inequality (the proof parallels that of (2.3)). It follows that
Q. =]4,|(c* — A)~" is a bounded operator on L? to itself, with | Q. || < 1if ¢ is
sufficiently large. Since (2.7) implies ,u| = Qc*] u] and hence ”|u |“ = “ Qc*lu[“
with | @.* | < 1, we conclude that [u| =0.

Since ¢ can be made arbitrarily large by choosing Re( large, this completes
the proof of Proposition 3.

We need further estimates related to T for later use. To this end, it is convenient
to introduce the Hilbert space H,™ * the anti-dual of H,. Since 2 < H} (algebraical-
ly and topologically), we have H, ' < @’ and the elements of H, ' may be regarded
as distributions on R™. Since H; c I? densely, we have the standard triplet

(2.11) Hi cI?<H, ' (with dense embeddings).

PROPOSITION 4. Let ucI? and TueH;'. Then ucH, with



142 T. KATO Israel J. Math.,
(2.12) (=20} u||wf < (g* + 1+ MY u| + @)~ Tu |y
Proor. First assume u € . From (2.4) we have

Re(T+ Qu,u) = (1 —¢) | u ((,2,;+ Rel~q*~1-M)|u]|™

If Re( is sufficiently large, we obtain
(-9 fu|f S Re(T + Qu,w) < | (T+Oulluy' | u]ats

so that
(2.13) lulus @ =&~ T+ Oulu;t.

If we assume Re{ to be larger yet if necessary, (T + ()2 is dense in I? (because
T is essentially self-adjoint, see (E3) of Introduction) and hence in H, ! too. By
the standard closure procedure using (2.13), we see that T + { maps a subset of
Hi onto H;*. No other elements of I? are mapped into H, !, since T + { is one

to one on I,
Now let u e I? with Tue H,™* Then (T + {ue H, ", and it follows from the

above result that u e H.
To deduce the estimate (2.12), we may again assume u € 2; in the general case
we can argue by closure as above. We have by (2.4)

(A-ofulis £ @+1+M)|u|*+ | Tula |u]s

g*+1+M) Hu “2 + s“u “f,,‘, + (48)‘1” Tuzn,,"

b 2

IIA

from which (2.12) follows.

3. Localization

In this section we continue to assume that g* = const.

As above we denote by By the open ball in R™ with center O and radius R. If
0 < r < R, we denote by ¢, r a function ¢ € 2 (not unique) such that 0 < $p < 1,
¢(x) =1 for xeB,,;, and ¢(x) =0 for x ¢ Bg_;, where 6 = (R — r) /4. It is easy
to see that for ¢, = ¢ we may assume that
(3.1) " ¢ “L°° =1, H Ot “Lw <c¢(R-n1, ” 0;09 ”L°° Se(R-1)73,
where ¢ is a numerical constant.

PROPOSITION 5. Let uclI? and TueLl,. Then ucHL, and we have for
any 0<r<R

(3.2 [ # b = 280 Tt [2am + @ ) + ¢f u]
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where ¢ is a constant depending only on m, R—r, and q,. Furthermore,
T(pu)e I? for any $p€D.

PROOF. Let ¢ =@, and apply (1.8). We have ¢ Tuel’ with | ¢Tul|
< || Tu|ioapy and [udd | < [ul |A¢| .. Furthermore, X(d.) (D) belongs
to H, ' To see this, let € 2 and estimate

[ (Z (2) D), ¥) | £ | Z (u, DY)
< | Z (u, D) (0)) + (u, yAD)]
¥ lats ¢ =(Z] a1 +]Ad |7

A

c’”u‘

Hence X (3,) (D) belongs to H, ' with H, '-norm < ¢'|
(1.8) that T(¢u) e H, ' with

“ T(¢pu) H,,b“ < “ Tu “Lz(BR) + (¢ +¢") H u

, and we see from

u

e 186l
It follows from Proposition 4 that ¢u e H;, with

(1 =280 du ||t S (g% + 1+ MO u| + @)~ ¥(| Tu | 12s,) + Q" + ) |

u H)
Setting ¢ = 4, we arrive at the desired estimate (3.2), in which ¢ = 2*[(2c’ +¢")
+ (1 + M,)*]. Here ¢’ and ¢” depend only on m and R — r, and M depends only
on ¢,.

Once we know that u € H,},, the right hand side of (1.8) belongs to I? for any
¢ € 9. This completes the proof of Proposition 5.

PROPOSITION 6. Let uclI? Tucl?, and supp u < Bg. Then there exists a
sequence u, € 9 such that supp u, < By, u,— u and Tu,— Tu in L.

Proor. If we disregard the condition supp u, < B, there exists such a sequence
because T is essentially self-adjoint (see (E2) of Introduction). Suppose such a
sequence {u,} has been constructed.

Let ¢ € 2 be such that supp ¢ = Bg and ¢ = 1 on supp u. Then ¢u, - ¢u =u in
I2. Next replace u by u, in (1.8) and let n — co. Then ¢Tu, — ¢Tu = Tu in I2;
note that supp Tu < suppu. Also u,A¢ —uA¢ =0, since A¢g =0 on supp u.
Thus {¢u,} will satisfy all the requirements for {u,} of the proposition if we show
that

3.3) (0,9) (Dyu,) - 0 in I2.
Applying (2.12) to u, — u, we see that u, — u in H,. Hence D,u, — Dyu in I2, 50

that (8,¢) (Dyu,,) — (Or) (Dyu) =0 in I?; note that 8,¢ = 0 on supp u > supp Du.
This proves (3.3).
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4. The general case
We are now in a position to prove the theorem in the general case.

PROPOSITION 7. Proposition 5 is true in the general case with the single
change: replace g* by q*(R) in (3.2).

ProoOF. We define a new operator T’ of the same form as T by changing ¢, into
q}, where
q:(x), X € Bg,

00 = {ql(x) +¢*(x) - ¢*(R),  x¢Bs

Then ¢}(x) = — g*(R) everywhere, so that the results of the preceding sections
apply to T' with g* = g*(R).

Let u eI? and Tue L. Since ¢, — g, is a locally bounded function, T'u = Tu
+(q, —q)u is in IZ,. It follows from Proposition 5 applied to T’ that
u e H},. and that (3.2) holds with T and g* replaced by T’ and g*(R), respectively.
But since T'u = Tu in Bg, we have H T'u ”Lz(BR) = H Tu ”Lz(BR). This proves (3.2)
with g* replaced by ¢*(R). The last assertion of Proposition 5 can be proved as
before.

PrROPOSITION 8. LetuclI? Tucl?, and ¢ € D. Then T(pu) e I?, and there is a
sequence u, € 2 such that u,- ¢u and Tu,— T(¢u) in I2.

Proor. Choose R > 0 such that supp ¢ = By. Let T’ be the operator introduced
in the proof of Proposition 7. Since supp ¢u < Bg, Proposition 6 shows that there
is a sequence u,€ P such that supp u, < By, u,— ¢u and T'u,— T"'(¢u) in I*.
Then Tu, = T'u,— T'(¢u) = T(Pu), as required.

PROPOSITION 9. There is a sequence ¢,€ D with the following properties.
Ifuecl? and TueI?, then ¢,u—u and T($,u)— Tu in L2

PROOF. Let ¢ = ¢, , as defined in the beginning of Section 3, and set ¢,(x)
= ¢(x /n). Then ¢, = 1, 8,4, — 0, and 9,8,¢ — 0 boundedly. Hence ¢,u — u in 2.

To prove that T(¢,u) > Tu, we apply (1.8) with ¢ replaced by ¢, and let
n— oo. Then ¢,Tu — Tu and uA¢$, — 0 by the dominated convergence theorem.
Thus it suffices to show that the remaining terms (3,¢,) (D,u) also tend to 0 in 2.

We have ll(ak¢n) (Dyu) “ = “ O Pn
| 8n || < const. /n, as is easily seen from the definition. On the other hand,
application of Proposition 7 with r = 2n and R = 2n + 1 gives

\,_w ” Du “LZ(BZ”) because supp ¢, < B,,. But
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| Dt 252 < [0 [adem = 22| Tu | + q*@n+ DHu]) + cf

b

where ¢ does not depend on n because R — r = 1. Since g*(2n + 1)* = o(n) by
hypothesis, the desired result follows,

PROPOSITION 10. Let uel? and TueI?. Then there is a sequence u,€ 9

such that u,—u and Tu,— Tu in L*,

CoRrOLLARY. T is essentially self-adjoint. (This completes the proof of the

theorem; see condition (E2) in Introduction.)

Proor. According to Proposition 9, for each n = 1,2,--- there is ¢, € 2 such
that | $,u —ul <1/n and | T($,u) — Tu| <1/n. For this ¢,, Proposition 8
shows that there is u,, € & such that ” U,—¢,u ” < 1/nand |] Tu, — T(¢p,u) || <1/n.
Hence ” U, — U ” <2/nand ” Tu,— Tu ” < 2 /n. This proves the proposition and
hence the theorem.

5. Proof of Lemma A

We prepare several lemmas before proceeding to the proof of Lemma A. In
what follows L, means L., (Q).

LemMA 1. Let u and Lu be in L., Then dueL}, k=1, m.

Proor. This is a well-known result for elliptic differential operators, at least
if the a;, and b; are smooth enough. Since our assumptions on them are rather
weak, we shall briefly indicate how it can be proved. Construct a parametrix
g(x,y) as the standard fundamental solution for L, with the coeficients frozen
at x. Then Lg(x,") = — &, + k(x, "), where k(x,y) is C' in x for x # y and has a
singularity 0(|x —y }1‘"'). The standard procedure gives a local integral rep-
resentation for u in terms of Lu and u itself. After an iteration of this formula, the
kernels are at most O( [ x—y ‘ 2-my (assuming m = 3), and one can compute J,u by
differentiating under the integral sign. This leads to the desired result. (Actually it
follows that u e L2, and du e L, withany p~'>1—-2m~', s71>1—-m~1)

The next lemma concerns the well-known Friedrichs mollifier J?, which is an
integral operator with a nonnegative kernel j°(x — y), with j’€ 2 supported on B,
and with I!-norm equal to 1 (see Friedrichs [4]). We write J’w = w’. Note that
w’ e C*(Q,) for each w e 2'(Q), where Q, is a domain slightly smaller than Q and
Q,—-Q as p-0.

LeMMA 2. Let u and Lu be in L},.. Then
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w —>u, Lu*—Lu in L, as p—0.

Proor. The fact that u” is defined only on Q, dces not matter, since the lemma
is local and Q,— Q.

It is well known that u” - u in L} . Since (Lu)® — Lu, similarly it suffices to
show that

(5.1) (LJ? = J?Lyu -0 in L

loc*

We shall prove this for each term composing L.
For the term 0;a;,0,, we have, writing a for ay,

(52) ajaakjpu - Jpajaaku = al(a.]p - J"a)aku,

since J and 8, commute. Since du € L. by Lemma 1 and a e C', (5.2) tends to 0
in L. by a well-known result (see [4]). For the term d;a;b, we have, writing
apb,=c,

d;cJ?u~ JP0;cu = 6(cJ” — J°c)u —» 0 in L,
in the same way, since ucL}, and ceC'. Other terms can be dealt with in a
similar fashion,

LemmA 3. Let u and Lu be in L. Let ¢ >0 and

(5.3) u,=(|u]>+e») 2.
Then
6.4 Lou, 2 Re [(i/u)Lu].

PROOF. Since u, € Lj,, and | ii/u,| < 1, (5.4) makes sense in the same way as
(1.7). The proof of (5.4) is given in two steps.

I. First assume that u is smooth; ueC? is sufficient. Differentiating
u? = uii + ¢2, we obtain
(5.5) 2u,0,u, = (Qu)i + u(0,8) = (Du)i + u(Du),
where D, = 0, — ib, as before. It follows that

i,m

1,m o
(5.6) u? ¥ au(x)@u) @) | ul® X au(x) (Du) (D)
Jsk ik

for each x; the proof is elementary and involves only linear algebra for fixed x.
Next we multiply (5.5) by a; and differentiate in x;, obtaining
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2u,0;a 0k, + 2a,(0u,.) (Ou,)
= #0;a,Du + a;(0;7) (D) + uajajk—D_ka + a;,(0u) (5,;)
= @D, + ib;)a D + a;(D;u — ib ;i) (Dyu)
+ u(D; — ib)a D + ay(Dyu + ibu) (D).
Here all four terms involving b; explicitly cancel one another. On summing over
j, k=1,---,m and noting a; = a,;, we obtain

QuLou, + 2 X a,(0u,)(u,)
= alu +uLu+2 X a;(Du)(Du).

But the second term on the left is not larger than the last term on the right, by
virtue of (5.6) and u, = Iul Hence u,Lou, = Re (iiLu), and we obtain (5.3) on
dividing by u, > 0.

II. In the general case, we mollify u to u? = J°u. We have w” - u and Lu” —» Lu
in L. as p—0, by Lemma 2. Furthermore, we shall let p — 0 along a suitable
sequence so that u” —u a.e. pointwise.

Define u2=(u”), by (5.3). A simple calculation shows that Iu‘; -~ uel <
|lul=|u]] < |u*—u|. Hence uZ—u, as p—0, in L}, aswellas a.e. pointwise.
It follows that

6.7 Lou? — Lou, in 2'(Q).
Also
(# [u)Lu? — (@ fu)Lu = (@ [u) (Lu® — Lu)
+ [(@ [uf) ~ @ [u)]Lu—0 in I,

(5.8)

because Iﬁ” Ju®? | <1 and @ [ul-it]/u, ae. (use the dominated convergence
theorem for the second term on the right of (5.8)). Since (5.4) is true for u replaced
by u”, we see from (5.7) and (5.8) that it is true for u; note that the limit of non-
negative distributions is nonnegative.

Proor oF LEmMA A. The inequality (1.7) follows from (5.4) in the limit as
e¢—0. Indeed, we have u£—+[u[ uniformly, so that L0u€—>L(,|u| in 2'. Also
ii [u, — sign i boundedly, so that the right hand side of (5.4) tends to Re [(sign i7) Lu]
in L., (again use the dominated convergence theorem). This gives (1.7) as
required.
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