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ABSTRACT 

Recently B. Simon proved a remarkable theorem to the effect that the Schr6- 
dinger operator T ~ -  A ÷ q(x) is essentially selfadjoint on C~(R m) if 
0 ~ q ~ L2(Rm). Here we extend the theorem to a more general ease, 

m . 2 T =  - - r , . .  (O/~x.--lb.(x)) + q.(x) + q~(x), where b,, ql' q2 are real- 
J= I J J • • 

v a l u e d ' b j  E C ( R m ) '  q l ~ L 2 o c ( R m ) '  ql (x) ~ - - q % b  with q* ( r )mono tone  

nondecreasing in r and o(rO as r ~  oo, and q2 satisfies a mild Stummel-type 
condition. The point is that the assumption on the local behavior of ql is the 
weakest possible. The proof, unlike Simon's original one, is of local nature 
and depends on a distributional inequality and elliptic estimates. 

1. Introduction 

Cons ider  the  Schr~Sdinger ope ra to r  on  R m of  the fo rm 

1.1) T = - ~ (~k -- ibk(x)) 2 + q(x), ~, = 0/OXk, 
k = l  

where the bk and q are rea l -va lued  funct ions such tha t  

(1.2) qeL~o¢, b k e C  1, k = 1 , . . . , m ;  

here and  in wha t  fol lows C t, L 2, L~oc, etc. refer to the whole  space R m unless 

otherwise indica ted .  Note  tha t  T is f o rmal ly  self-adjoint. 

W e  denote  by To the ope ra to r  T with  bk = O, k = 1,. . . ,  m. 

We suppose  tha t  T is defined on the whole  o f  L 2, with values in 9 '  (the space 

o f  d i s t r ibu t ions  on Rm). Indeed ,  u ~ Lloc a l ready  implies  tha t  (0, - ibk)U is a 

d i s t r ibu t ion  o f  o rde r  < 1, and hence tha t  (~, - ibk)2U is a d i s t r ibu t ion  o f  o rder  

< 2 by  bk e C ~. O n  the o ther  hand,  u e L 2 implies  qu E Ltloc because q e L~c. Thus  

t Tb.is work was partly supported by NSF Grant Gp-29369X. 
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we have Tu ~ ~ ' .  Obviously Tis continuous on L 2 to ~ ' .  (Actually Tu ~ ~ '  if only 

u E L2oc, but we need not consider functions u outside/_,2.) 

Let ivbe the restriction of  Twith domain ~ = C~ ° (the space of test functions). 

Since T N  c L 2, iv may be regarded as an operator in L 2. Then iv is a symmetric 

operator. We are interested in the question whether or not iv is essentially self- 

adjoint. 

There are several well-known conditions equivalent to essential self-adjointness. 

Some of  them involve iV*, the adjoint (as an operator in L 2) of  iv. In the present 

case, it is easily seen that iv* is exactly the restriction of T in L2; in other words, 

iv*u is defined whenever u and Tu are in L 2, and in this case iv*u = Tu. 

Using this fact, we see immediately that the following conditions are equivalent. 

(El) iv is essentially self-adjoint. 

(E2) The restriction of  T in L 2 is the (strong) closure of iv; in other words, for 

each u ~ L 2 with Tu ~ L 2, there exists a sequence u, E N such that u, ~ u and 

Tu,  ~ Tu in L 2. 

(E3) (T + 0 N is dense in L 2 for every complex number ( with Im ( ¢ 0 or, 

equivalently, for two complex ( with Im ( ~ 0. 

(E4) T + ( is a one-to-one map of  L 2 into N '  for ( as in (E3). 

The problem of  the essential self-adjointness of iv has a long history, for which 

we refer the reader to a recent book by Schechter [,1] and a recent paper by 

Simon [-2]. But we have some comments. Condition (1.2) is not sufficient for iv to 

be essentially self-adjoint, and many additional conditions have been proposed. 

But if q = q + - q -  with q+ > 0, then q -  required a stronger condition than q +. 

For  example, a global condition of Stummel type (see [1]) was required of  q -  

while only a local condition of the same type was required of q+. In any case, 

some local condition stronger than q+ ~ L2oc was assumed in all known theorems. 

(Incidentally, no restriction on the global behavior of the bk was necessary, as 

was shown in Ikebe and Kato [3]; see also [-1].) 

Thus it came as a surprise when Simon [2] proved that ivo is essentially self- 

adjoint if q = qt + q2 with 0 < ql eL2 and q2 eL~°. He further conjectured that 

0 < q 1 ~ L2oc would suffice.His proof depends on a rather sophisticated tool developed 

in quantum field theory, which is functional analytic and therefore global in nature. 

The purpose of the present paper is to show that iv is, in fact, essentially self- 

adjoint under more general conditions than conjectured by Simon. Our assump- 

tions are: 
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(C1) The bk are real and in C 1. 

(C2) q = ql + q2, with ql ~L2oc and 

(1.3) q~(x) >= - q*([ x I), 

where q*(r) is monotone nondecreasing in r > 0 and q*(r) = o(r 2) as r ~ oo. 

(C3) q2 ~L2oc, with 

(1.4) ~ [ q2(x)12dx ~ K2r 2s, 1 _-< r < 0% 
d Ixl~r 

where K and s are some constants, and 

(1.5) ~ IqE(x-y)]  [ylE-mdy-~Oasr--.O, uni formlyinxER m, 
JI y[~=r 

where [ y[2- , ,  should be replaced by log I y[ if m -- 2 and by 1 if m = t. 

If  m > 5, (C3) may be replaced by another condition: 

(C3') q2 @j~,,/2. 
Our theorem reads: 

THEOREM. T is essentially self-adjoint if (C1), (C2), and (C3) are satisfied. 
I f  m >__ 5, (C3) may be replaced by (C3'). 

REMARKS. 1. The conditions (C1) to (C3) resemble those made in [3 3, but the 

local conditions on q are much weaker than in [3]. It may be noted that the 

Stummel-type condition (1.5) is usually introduced to define the Friedrichs 

extension of T, but our aim here is more ambitious than that. 

2. If  m = 4, (C3') does not work in our proof, since it corresponds to the 

critical case in the Sobolev inequality. It suffices to assume q2 E LP with some 

p > 2, but this implies (C3) so we need not consider it separately. Actually it 

suffices to assume that q2 E LPloc uniformly (by which we mean that the LP-norm of  

q2 on any ball with radius 1 is uniformly bounded), since this implies (C3). 

Similarly, if m __< 3 it suffices that q2 ~ L~2c uniformly, since this implies (C3). 
For  these conditions, see [2 3 . 

3. One could consider a more general differential operator of  the second 

order, as was done in E3], but we refrain from doing so in this paper. 

The proof  of the theorem given below is conventional and " loca l" ,  based on 

standard elliptic estimates. But we use a lemma of a new type at a crucial stage. 

As in all problems of this kind, we have to prove, at some point, a result symbol- 

ically expressed by "weak = strong" (the theorem itself is of  this nature). But the 

customary method does not seem to work owing to the high singularity of ql. 
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Instead we use the following lemma which is stated in a form more general than 

necessary for the present purpose, since it has its own interest, it is useful for other 

applications, and since the proof is not essential|y different from the special case 

]_,EMMA A. Let 

l~rtt 

(1.6) L = ]g (0; - ib~(x))ajk(X)(Ok -- ibk(X)), 
j , k  

where ajk and bj are real-valued functions in C1(~), ~ being an open set in R m. 

Assume that (ajk(X)) is a positive definite symmetric matrix  for  each x ~ .  I f  u 

and Lu are in L~oc(~), then 

(1.7) Lol u I > Re [(sign fOLu], 

where Lo is the operator L with b, = O, k = 1, ..., m. 

REMARKS. 1. By definition sign fi(x) = u(x) / lu(x) l  if u(x) # 0 and = 0 if 

u(x)  = O. 

2. Lu makes sense as a distribution on f~ if u ~ L~oc(f~), as was shown above. 

The assumption of the lemma implies that Lu is equal to a function in 

L]o~(f~). Since sign ~ is bounded, the right hand side of (1.7) is in L~o~(f]). 

The left hand side is in N'(f~) because l u [e L~o~(~ ). The inequality (1.7) asserts 

that the difference of the two sides is a nonnegative distribution (hence a non- 

negative measure). 

3. Technically, the lemma allows one to work .in later proofs with inequalities 

that are almost linear in u, whereas most of the standard methods make use of 

inequalities that are quadratic in u, for example those involving Dirichlet integrals. 

But the singularity of ql does not allow one to define such quadratic expressions 

at crucial points. 

The theorem will be proved in Sections 2 to 4 assuming Lemma A, which will 

be proved in Section 5. 

Before closing this section, we give a simple formal identity which is used 

frequently in the sequel. For u e L z and ~b e N, we have 

(1.8) T(~bu) = qSTu - 2 ~ (OkCtS)(DkU) -- (A~b)u, 
k = l  

where A = •02 is the Laplacian and 

(1.9) D k = O k - i b k ( X ) ,  k = 1 , . . . ,  m .  

The proof of (1.8) is straightforward and may be omitted. The important fact 
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is that  on the right hand  side the derivatives of  u appear  only in the combinat ions  

Tu  and DkU. 

2. The special ease q* = eonst. 

In  this section we prove  the theorem in the case q * =  const.  (so tha t  ql is 

bounded  f rom below) and deduce some estimates required later. 

We introduce the new n o r m  

(2.1) II u II%d--II u II 5 + ~: II D~u II ~, Dk = ~k - -  ibk, 
k=l  

where [I II without  subscript  denotes the L2(Rm)-norm. The  complet ion o f  

under  the n o r m  (2.1) is denoted by H i .  I t  is easy to see that  

1 (2.2) H i  c H,oc, H¢  c L z, 

algebraical ly and topological ly,  where H~o c is the usual Sobolev space, t 

We  note  that  H i  is, in general, not  closed under  complex conjugation.  

PROPCSITION 1. For  u e H~ and e > O, we have 

(2.3) Jlq2(~) I lu(~)l 2dx <- ~ll u [I =* ~b + Mell u II 2, 
where  inte#ration on R "  is understood and the constant M e depends only on e 

and q2. 

PROOF. I f  b = (bk) = 0, this is a wel l -known result. Fo r  the p r o o f  when (1.5) is 

assumed,  see [1, Theorem 7.3]. When m > 5 and (C3')  is assumed,  it is a con-  

sequence of  the Sobolev inequality. Indeed,  u e H * implies u e L v, p -  ~ = 2 -  * - m - *, 

with II u 11~ --< const II u I1~', so that  (2.3) holds at  least with some e > 0 depending  

on II q2 IlL rn/2. But q2 can be writ ten as a sum q '  + q", where q" ~ U ° and [I q '  [IL,~/~ 

is as small  as one likes. This gives (2.3) for  any e > 0. 

To  prove  (2.3) when b 4 0 ,  we may  assume u c ~ . T h e n  we app ly  (2.3) for  b = 0 t o  

I u I replacing u. The  left hand  side is not  changed by this substitution. Thus  it suf- 

fices to show that  Illu I Il~,--< II u I I - ' .Th i s  is p roved  in [ 3 ] i n  a more  general case"  

PROPOSITION 2. J ' i s  bounded f r o m  below. 

PROOF. Let  u e ~ .  Using (1.3) and (2.3), we have 

(2.4) (Tu, u) = ~ IIo~ull = +((qt + q z ) u , u )  
k = l  

t As is easily seen,/-/~ is characterized as the set of all u ~ Hi1,, e such that u and the Dk u 
are in L 2. 
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21 
--> II u II~z - <q* ÷ 1)I1 u I1 ~ - ~ll u I1~ - Mdl u II ~ 

( 1 -  ~) II u l t ~ : -  ~q* + 1 + M,) II u II 2, 

from which the result follows on choosing e = 1. 

PROPOSITION 3. t For any complex number ~ with Re(  sufficiently large, 

T+  ~ is a one-to-one map of L 2 into ~ ' .  

COROLLARY. Z is essentially self-adjoint. 

PROOF. (For the corollary, see conditions (El) and (E4) of Introduction.) 

We have to show that u ~ L 2 and ( T +  ()u = 0 together imply u = 0. 

( T +  ~)u = 0 implies Lu = (q + ()u ~L~oc, where L is the operator (1.6) with 

a~k(X) = bjk. Thus Lemma A gives 

A I u I > Re [(sign h) (q + ()u] = (q + Re () l u I > ( -  q* + q2 + Re ()1 u l" 

Writing c 2 = Re(  - q*, we have 

(2.5) (c 2 -  A)I . I  =< - q~lul _-< Iq~l lul .  
Suppose Re~ is so large that c 2 > 0. Then c 2 - A  maps the Schwartz space SP 

onto itself one to one, so that it also maps the dual space S~' onto itself one to one. 

Furthermore, (c 2 - A)-1 has a kernel g~(x - y), where 

(2.6) 0 < go(x) < A] x] 2-%-~1~1/2 (m > 3), 

with A depending only on m. Inequality (2.6) follows from the expression g~(x) 

= const, ix ]¢2-')12K(m_ 2)/2(I x 1) (where K is the modified Bessel function of  the 

second kind) and the homogeneity relation g~(x)= c'-2g~(cx). (It will not be 

necessary to describe how the following arguments should be modified in case 

m = < 2 . )  

It follows that (c 2 -  A) -* is a positive operator, sending positive functions 

into positive functions and, consequently, positive elements of St '  into positive 

ones. Thus (2.5) gives 

(2.7) lul < ( c 2 - A ) - l l q 2 u l ;  

note that both [u I and I q2u ] are in ~ ' .  This is trivial for ]u ] 6 e .  For  l q2u I, it 
follows from (1.4) if (C3) is assumed. Indeed (1.4) implies 

t This is our key proposition. Simon (private communication) has another proof when 
(C3') (or its variant for m ~ 4) is assumed, which also depends on Lemma A. 
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where BR is the ball in R m with center O and radius R. If  (C3') is assumed for 

m _-> 5, we have similarly [[ q2 u [IL'(~., < const. R'm-4~/2[I q2 tlr'2[I nt l  Thus q2u 

is a slowly increasing function in Ltolc belonging to 5 p'. 

In terms of the kernel #c, (2.7) becomes 

(2.8) [ u(x)[ < fac(x  - y)J q2u(y)ldy.  

Set 

(2.9) v~(x) = e-~lxl/' I q2u(x) l. 

Using the estimate on the local Ll-norm of q2 u given above, it is easy to see that 

Vc ~ I2. Multiplying (2.8) by e-~l~l/41 qz(x) I and using the inequalities (2.6) and 
e cqrl-lxl)/4 < e clx-yl/4, we obtain 

Vc(X) <= A lqz(X) I f l  x - yl2-'ne-clx-yll4vc(y)dy, 

where A is independent of c. 

Integrating this inequality in x, we obtain 

(2.10) Hv~IIL, < A f vc(y)dy Slx- ylZ-"e-~lx-'l/41q~(x)ldx. 
Now it is not difficult to show, using (1.5), that the integral in x on the right of 

(2.10) can be made smaller than 1/2A for every y e R" if c is chosen large enough. 

(In this proof one should note that (1.5) implies that the integral of I q21 on any 

ball of a fixed radius is uniformly bounded.) Thus (2.10) gives v~ = 0. Then we 

see from (2.9) that q2u = 0, and from (2.8) that u = 0. 

If  (CY) is assumed for m > 5 instead of (C3), we argue as follows, q2 eL"/2 as 

an operator in L 2 is bounded relative to - A, with relative bound 0, by virtue of 

the Sobolev inequality (the proof parallels that of (2.3)). It follows that 

Qc = } q2 l (  e2 -- A) -1  is a bounded operator o n  L 2 to itself, with II Q~ 11 < 1 if c is 

sufficiently large. Since (2.7)implies lul  <= Qc*Iul and hence Illulll z Il ec*l,'lll 
with [I Qc* [I < 1, we conclude that I u [ = 0. 

Since c can be made arbitrarily large by choosing Re( large, this completes 

the proof of Proposition 3. 

We need further estimates related to T for later use. To this end, it is convenient 

to introduce the Hilbert space Hb- 1, the anti-dual of He. Since N c  Hi (algebraical- 

ly and topologically), we have Hb-- 1 c ~ '  and the elements ofH~- 1 may be regarded 

as distributions on R m. Since H~ c L 2 densely, we have the standard triplet 

(2.11) H~ ~ L 2 c H b  1 (with dense embeddings). 

PROPOSITION 4. Let u E L 2 and Tu ~ H b l .  Then  u 6 Hb 1 with 
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(2.12) 

PROOF. 

If  Re ~ is 

so that 

(2.13) 
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(1 - 2~)~1[ u II.~ <= (q* + 1 + M.)~[I u II + (4z)-½1l Tu [In:'. 

First assume u e N. From (2.4) we have 

Re( (T+ Ou, u) >= (1 - ~)[I u Ill: + (Re~ - q* - 1 - M~)[[ u [[2. 

sufficiently large, we obtain 

(1 - o  11. I[~.;__< RefiT + Ou, u) < l[(r + 0 .  [I.;' 1[ u lin:, 

II u II-: ~ (1 - ~)-111Z ÷ 0 u  l[nZ ~ 

If  we assume Re ~ to be larger yet if necessary, ( T +  ( ) ~  is dense in L 2 (because 

;V is essentially self-adjoint, see (E3) of  Introduction) and hence in H~-~ too. By 

the standard closure procedure using (2.13), we see that T + ( maps a subset of  

H~ onto H~-~. No other elements of  L z are mapped into H~ 1, since T + ~ is one 

to one on L 2. 
Now let u e L 2 with Tu ~ Hb- 1. Then (T + 0 u  s Hb-" l, an:l it follows from the 

above result that u e Hb ~ . 

To deduce the estimate (2.12), we may again assume u e ~ ;  in the general case 

we can argue by closure as above. We have by (2.4) 

(1 - 0 II u I1~ ___ (q* + 1 + Ma II u 11 ~ + II Tu I1-:' II u IInL 
=< (q* + 1 + m~)1[ u [[2 r e  1[ u [[~£ + (4Q-l[] Tu21[n; ' ,  

from which (2.12) follows. 

3. Localization 

In this section we continue to assume that q* = const. 

As above we denote by B~ the open ball in R = with center O and radius R. If 

0 < r < R, we denote by q~,,R a function 4) e ~ (not unique) such that 0 < ~b < 1, 

~b(x) = 1 for xeB ,+a ,  and qS(x) = 0 for x q~B~-a, where ~ = (R - r)/4. It is easy 

to see that for qS,, R = q5 we may assume that 

o l )  II~ l l ,~- - ' ,  I I ~ k ~ l t ~ = < c ( g - 0  -*, Ila, ak~lI ,~-<-~(R-r)-=,  
where c is a numerical constant. 

PROPOSITION 5. Let u ~ L 2 and Tu ~ 2 Lto ~. Then u ~H~o,, and we have for  

any 0 < r < R  

(32) I1 u Iln'b(B~, ~ 2+(II Zu I['=<B~' + q"ll u 11) + cll u I1' 
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where c is a constant depending only on m, R - r ,  

T(4)u) ~ L 2 f o r  any 4) ~ ~ .  

PROOF. Let 4)= 4),,n and apply (1.8). We have 

and q2. 

143 

Fur thermore ,  

4) Tu  ~ I )  with II 4)Tu II 
<= II Tu  IIL2(SR), and II uA4)II =< II u II I1A4)ILL*- Furthermore, ]~(3k4)) (Dku) belongs 

to H~- '  To see this, let ~s ~ ~ and estimate 

1(• (0k4)) (DkU), $)1 < ] X (u, Dk($~4))] 

-5_ [ X (u, (Dj,)(~k4))) + (u, ~,A4))] 

---- ~'llull II~'ll.', c, = ( x  II~k4)llLo + IIA4)II~=) +. 

Hence ~] (0k4))(DkU) belongs to Hb-' with Hb ' -norm =< c'll u I1, and we see from 

(1.8) that T(4)u) ~ H~  1 with 

II T(4)u)I1-:' ~ II ru  11~=<,,,, + (2c' + e")II u II, c" = II A4)II,~oo- 
It follows from Proposition 4 that 4)u ~ H~, with 

( ~ -  2~)*114)u I1,,'~ --< (q* + ~ + M:)*tI,, 11 + (40-*(11Tu I1,~=(,,,)+ (2c' + c") II u lb. 
Setting ~ = ¼, we arrive at the desired estimate (3.2), in which c = 2¢r(2c , + c,,) 

+ (1 + M+)¢]. Here c' and c" depend only on m and R - r, and M.  depends only 

on q2. 

Once we know that u E Hz'oc , the right hand side of (1.8) belongs to L 2 for any 

4) m ~ .  This completes the proof of Proposition 5. 

PROPOSITION 6. Let  u ~ L 2, Tu  c L 2, and supp u ~ BR. Then  there exists a 

sequence u,  ~ ~ such that supp u,, ~ B R  , U n -+ U and T u ,  ~ Tu  in L 2. 

PROOF. If  we disregard the condition supp u,  ~ BR, there exists such a sequence 

because J" is essentially self-adjoint (see (E2) of Introduction). Suppose such a 

sequence {u,} has been constructed. 

Let 4) ~ ~ be such that supp q5 = BR and 4) = 1 on supp u. Then 4)u, ~ 4)u --- u in 

L 2. Next replace u by u, in (1.8) and let n-~ o~. Then 4 ) T u , ~ 4 ) T u  = Tu  in L2; 

note that supp Tu ~ suppu. Also u,A4)~ uA4)= 0, since A4)= 0 on supp u. 

Thus {4)u,} will satisfy all the requirements for {u,} of the proposition if we show 

that 

(3.3) (0k4)) (DkU,) ~ 0 in L 2. 

Applying (2.12) to u, - u, we see that u, ~ u in H~. Hence DkU n -+ Dku in L 2, so 

that (Ok4)) (DkU,) ~ (Ok(a) (DkU) = 0 in L 2 ; note that Ok4) = 0 on supp u = supp DkU. 

This proves (3.3). 
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4. The general case 

We are now in a position to prove the theorem in the general case. 

PROPOSITION 7. Proposit ion 5 is true in the general  case with the single 

change: replace q* by q*(R) in (3.2). 

PROOF. We define a new operator T'  of the same form as T by changing ql into 

q'l, where 

cq 1 (x), x C BR, 

q'l(x) = )[ql(x) + q*(lx]) - q*(R), x q~ B R. 

Then q'~(x) >= - q*(R) everywhere, so that the results of the preceding sections 

apply to T '  with q * =  q*(R). 

Let u e L  2 and Tu ~L~oc. Since q'l - ql is a locally hounded function, T ' u  = T u  

+ ( q ' l -  ql)  u is in L~oc. It follows from Proposition 5 applied to T '  that 

u ~ H]oc and that (3.2) holds with T and q* replaced by T '  and q*(R), respectively. 

But since T 'u  = Tu  in B e, we have II T 'u  IIL2(BR) = I[ TU[IL2(BR)" This proves (3.2) 

with q* replaced by q*(R). The last assertion of Proposition 5 can be proved as 

before. 

PROPOSITION 8. Let u E L 2, Tu  E L z, and q~ ~ 9 .  Then T(~bu) ~ L z, and there is a 

sequence un ~ ~ such that u n ~ qbu and Tun ~ T(c~u) in L 2. 

PROOF. Choose R > 0 such that supp ~b = BR. Let T '  be the operator introduced 

in the proof  of Proposition 7. Since supp ~bu = BR, Proposition 6 shows that there 

is a sequence un ~ ~ such that supp u n = BR, un ~ qSu and T'un-~  T'(Ou) in L 2. 

Then Tun = T'un ~ T'(~bu) = T(~u) ,  as required. 

PROPOSITION 9. There  is a sequence ~n ~ ~ with the fo l lowing  properties.  

I f  u E L 2 and Tu  ~ L 2, then dpnu ~ u and T(dpnu ) ~ Tu  in L 2. 

PROOF. Let ~b = q51. 2 as defined in the beginning of Section 3, and set ~bn(x) 

= qb(x/n). Then ~b n ~ l, ~3kqb n -~ 0, and ajdkq~ ~ 0 boundedly. Hence qSnu ~ u in L 2. 

To prove that T(dpnu ) ~ Tu ,  we apply (1.8) with ~b replaced by q~n and let 

n -~ c~. Then c~nTu ~ Tu  and uAqSn -~ 0 by the dominated convergence theorem. 

Thus it suffices to show that the remaining terms (Sk~bn)(DkU ) also tend to 0 in L 2. 

We have It(~n)(D~u)[I =< [1 a~nl[L~ [I D~u [[L~,~o, because supp ~bn= B2n. But 

1[ dkgbn []L~ < const./n, as is easily seen from the definition. On the other hand, 

application of Proposition 7 with r = 2n and R = 2n + 1 gives 
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I[ DkU I[L=(B~.) < [1U ]in~,8~.) < 2t'([1Tu [1 + q*(2n + 1)~1[ u II) + c[[ u I], 

where c does not depend on n because R - r = 1. Since q*(2n + 1) ~ = o(n) by 

hypothesis, the desired result follows. 

PROPOSITION 10. Let u e L  2 and Tu ~ L  2. Then there is a sequence u , ~  

such that u,--* u and T u ,  ~ Tu  in L 2. 

COROLtARY. T is essentially self-adjoint. (This  completes the proof  o f  the 

theorem; see condition (E2) in Introduction.)  

PROOF. According to Proposition 9, for each n = 1,2, .-. there is ~b, e ~ such 

that II ~,u - u I[ < 1/n and II T(~ ,u)  - Zu  II < 1/n. For this ~b,, Proposition 8 

shows that there is u. ~ N such that II u , - ~ , ~  11 < ~/n and It Tu ,  - T<~°u)II < 1/~. 

Hence li u, - u 11 < 2/n and 11T . - Tu  I1 < 2/n  This proves the proposition and 

hence the theorem. 

5. Proof of  Lemma A 

We prepare several lemmas before proceeding to the proof of Lemma A. In 

what follows L~oc means L~oc(f~). 

LEMMA 1. Let  u and Lu be in L~o ~. Then OkU ~ LtXoc, k = 1, . . . ,  m. 

PROOF. This is a well-known result for elliptic differential operators, at least 

if the ajk and b /a re  smooth enough. Since our assumptions on them are rather 

weak, we shall briefly indicate how it can be proved. Construct a parametrix 

9(x, y) as the standard fundamental solution for L o with the coefficients frozen 

at x. Then Lg(x ,  ") = - 6x + k(x,  "), where k(x, y) is C 1 in x for x # y and has a 

singularity O ( I x -  Yll-m)" The standard procedure gives a local integral rep- 

resentation for u in terms of Lu and u itself. After an iteration of this formula, the 

kernels are at most 0([ x - y l z - " )  (assuming m > 3), and one can compute OkU by 

differentiating under the integral sign. This leads to the desired result. (Actually it 

follows that u ~ LtoPc and OkU ELl~oc with any p-~ > 1 - 2m -~, s -1 > 1 - m-~.) 

The next lemma concerns the well-known Friedrichs mollifier jo, which is an 

integral operator with a nonnegative kernel f ( x -  y), with jPe N supported on B o 

and with L~-norm equal to 1 (see Friedrichs [4]). We write JPw = w °. Note that 

w p E C~(flp) for each w E N'(f~), where f~p is a domain slightly smaller than f~ and 

~ p ~ f ~  as p-*0.  

LEMMA 2. Let u and Lu be in Llo c. Then 
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u p ~ u ,  Lu  p ~ L u  in L]oc as p ~ O .  

PROOF. The fact that u p is defined only on ~p dces not matter, since the lemma 

is local and tqp ~ tq. 

It is well known that u p ~ u in L,loc . Since ( L u ) ° ~  Lu ,  similarly it suffices to 

show that 

(5.1) (L Ip  - JPL)u ~ 0 in L~o~. 

We shall prove this for each term composing L. 

For  the term ajajkO k, we have, writing a for ajk, 

(5.2) ~ja~kJPU -- JPdja~k u = ~ j (aJ  p -- JPa)~gu, 

since JP and 0k commute. Since 0ku ~ L~lo~ by Lemma 1 and a E C ~, (5.2) tends to 0 

in L~oc by a well-known result (see [4]). For the term ajaikb k we have, writing 

a jkb  k ~ C, 

d j c J P u -  JPdjcu = 8j (cJ  p - JPc)u ~ 0 in Llol~ 

in the same way, since u~L~o~ and c ~ C  1. Other terms can be dealt with in a 

similar fashion. 

LEMIClA 3. Le t  u and  Lu  be in L~loc. Le t  e > 0 and  

(5.3) u~ = ([u[ z + 82) ~r >= e. 

T h e n  

(5.4) Lou , >= Re [(t~/u~)Lu]. 

PRoov. Since u ~ L ~ o ~  and I /u l _-< 1, (5.4) makes sense in the same way as 

(1.7). The proof of (5.4) is given in two steps. 

I. First assume that u is smooth; u ~ C  2 is su~cient. Differentiating 
2 u, = ufi + ~2, we obtain 

(5.5) 2u~dku~ = (8kU)ft + U(akfO = (DkU)ft + u(Oku),  

where Dk = dk -- ibk as before. It follows that 

1,m 1,m 

2 Z ajk(X) (OjU~) (O~U,) < [ U ] 2 E ajk(X) (Oju)  (OkU) (5.6) U~ = 
j ,k  j ,k  

for each x; the proof is elementary and involves only linear algebra for fixed x. 

Next we multiply (5.5) by ajk and differentiate in x j, obtaining 
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2UtOjaikOkUt + 2aik(~ju~)(Oku~) 

= ~t~jajkDkU + Ojk(~j~l ) (DkU) -Jr uOjajkDkU q- ajk(Oju)(DkU ) 

= ft(Dj + ib.i)ajkDgU + ajk(Dju -- ibjft)(Dgu) 

+ u(I)2 - ibj)ajkDkU + ajR(Dju + ibju)(Dku ). 

Here all four terms involving bj explicitly cancel one another. On summing over 

j, k = 1, . . . ,m and noting ajg = akj , we obtain 

2utLou ~ + 2 ~_. a,k(~jUt)(~kU,) 

= ftLu + uLu + 2 ~ ajk(Dju) (DkU). 

But the second term on the left is not larger than the last term on the right, by 

virtue of (5.6) and ut > l u  I" Hence utLout > Re(~Lu), and we obtain (5.3) on 

dividing by u~ > 0. 

II. In the general case, we mollify u to u p = JPu. We have u p ~ u and Lu p ~ Lu 

in L~oc as p ~ 0, by Lemma 2. Furthermore, we shall let p ~ 0 along a suitable 

sequence so that u p- ,  u a.e. pointwise. 

Define u~-P-(uP)~ by (5.3). A simple calculation shows that ]u tp- utl < 

I I u'I-I u If < I u'- u I" Hence u:-~ u~ as p --. 0, in L~o¢ as well as a.e. pointw[se. 

It follows that 

(5.7) 

Also 

Lou~ ~ Lout in -~'(~). 

(tip/u~)Lu p - ( ft /u ,)Lu = (tip/u °) (Lu ° - Lu) 
(5.8) 

+ [ ( Y / u O  - (~ /u j ]Lu  ~ 0  in L~oc, 

because [f:/u°~l-< 1 and f t ° /u° , - , f t /u t  a.e. (use the dominated convergence 

theorem for the second term on the right of (5.8)). Since (5.4) is true for u replaced 

by u p, we see from (5.7) and (5.8) that it is true for u; note that the limit of non- 

negative distributions is nonnegative. 

PROOF or  LEM~tA A. The inequality (I.7) follows from (5.4) in the limit as 

e ~ 0. Indeed, we have u~-,  [u [ uniformly, so that Lou t - ,  L,,[ u [ in -~'. Also 

ft/u~ ~ sign fi boundedly, so that the right hand side of(5.4) tends to Re [-(sign ff)Lu] 

in L:oc (again use the dominated convergence theorem). This gives (1.7) as 

required. 
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